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Abstract: The present investigation deals with the deformation in micropolar generalized thermoelastic medium with mass 
diffusion subjected to thermo mechanical loading due to thermal laser pulse. Laplace and Fourier transform technique is used 
to solve the problem. Concentrated normal force and thermal source are taken to illustrate the utility of approach. The closed 
form expressions of normal stress, tangential stress, tangential couple stress, mass concentration and temperature distribution 
are obtained in the transformed domain. Numerical inversion technique of Laplace transform and Fourier transform has been 
applied to obtain the resulting quantities in the physical domain after developing a computer program. The normal stress, 
tangential stress, tangential coupled stress, temperature distribution and mass concentration are depicted graphically to show 
the effect of relaxation times. Some particular cases of interest are deduced from the present investigation. 
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Introduction 
Micropolar theory of elasticity was introduced by Eringen [1]. This theory incorporates the local deformation and rotation of 
the material points of the composite. This theory provides a model that can support body couples and surface couples and 
exhibits a high frequency optical wave spectrum. Eringen [2, 3], Maugin and Mild [4], Nowacki [5] developed the linear 
theory of micropolar thermoelasticity by excluding the micropolar theory of elasticity to include the thermal effects. Touchert 
et al. [6] derived the basic equations of linear theory of micropolar coupled thermoelasticity. Diffusion is defined as the 
spontaneous movement of the particles from a high concentration region to the low-concentration region, and it occurs in 
response to a concentration gradient expresses as the change in the concentration due to change in position. Thermal 
diffusion utilizes the transfer of heat across a thin liquid or gas to accomplish isotope separation. Today, thermal diffusion 
remains a practical process to separate isotopes of noble gases e.g., Xenon and other light isotopes e.g., Carbon for research 
purposes. In most of the applications, the concentration is calculated using Fick’s law. This into consideration is a simple law 
which does not take the mutual interaction between the introduced substance and the medium into which it is introduced or 
the effect of temperature of this interaction. However, there is a certain degree of coupling with temperature and temperature 
gradients as temperature speeds up the diffusion process. Nowacki [7, 10] developed the theory of thermoelastic diffusion by 
using coupled thermoelastic model. Dudziak and Kowalski [11] and Olesiak and Pyryev [12], respectively, discussed the 
theory of thermo diffusion and coupled quasi stationary problems of thermal diffusion for an elastic layer. Laser technology 
has a vital application in nondestructive materials testing and evaluation. When a solid is heated with a laser pulse, it absorbs 
some energy which results in an increase in localized temperature. This cause thermal expansion and generation of the 
ultrasonic waves in the material. There are generally two mechanisms for such wave generation, depending on the energy 
density deposited by the laser pulse. At high energy density, a thin surface layer of the solid material melts, followed by an 
ablation process whereby particles fly off the surface, thus giving rise to forces that generates ultrasonic waves. At low 
energy density, the surface material does not melt, but it expands at a high rate and wave and wave motion is generated due to 
thermoelastic processes. Very rapid thermal processes (e.g., the thermal shock due to exposure to an ultra-short laser pulse) 
are interesting from the stand point of thermoelasticity, since they require a coupled analysis of the temperature and 
deformation fields. A thermal shock induces very rapid movement in the structural elements, giving the rise to very 
significant inertial forces, and thereby, an increase in vibration. Rapidly oscillating contraction and expansion generates 
temperature changes in materials susceptible to diffusion of heat by conduction [13]. This mechanism has attracted 
considerable attention due to the extensive use of pulsed laser technologies in material processing and non-destructive testing 
and characterization [14, 15]. The so-called ultra-short lasers are those with pulse durations ranging from nanoseconds to 
femto seconds. In the case of ultra-short pulsed laser heating, the high intensity energy flux and ultra-short duration lead to a 
very large thermal gradients or ultra-high heating may exist at the boundaries. In such cases, as pointed out by many 
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investigators, the classical Fourier model, which leads to an infinite propagation speed of the thermal energy, is no longer 
valid [16]. Researchers have proposed several models to describe the mechanism of heat conduction during short-pulse laser 
heating, such as the parabolic one-step model [17], the hyperbolic one-step model [18], and the parabolic two-step and 
hyperbolic two-step models [19, [20].  
In this research, taking into account the mass concentration effect and radiation of ultra-short laser, we have established a 
model for micropolar thermoelastic medium with mass diffusion by using Laplace and Fourier transforms. The stress 
components and temperature distribution have been computed numerically. The resulting quantities are shown graphically to 
show the effect of mass concentration and temperature. 
 
Problem Formulation 
Following Eringen [3] and Al-Qahtani and Datta [30] the basic equations for homogeneous, isotropic micropolar generalized 
thermoelastic solid with mass diffusion in the absence of body forces and body couples are given by: 
(휆 + 휇)∇(∇.풖) + (휇 + 퐾)∇ 풖+퐾∇ × 흓− 훽 1 + 휏 ∇푇 − 훽 1 + 휏 ∇퐶 = 휌풖̈,(1)        (1) 
(훾∇ − 2퐾)흓 + (훼 + 훽)∇(∇.흓) + 퐾∇ × 풖 = 휌푗흓̈, (2) 
퐾∗∇ 푇 = 휌푐∗ + 휏 푇 + 1 + 휀휏 (훽 푇 ∇. 풖̇ − 푄) + 푎푇 + 훾 퐶,                       (3)       

퐷훽 ∇ (∇.풖) +퐷푎 1 + 휏 ∇ 푇 + + 휀휏 퐶 − 퐷푏 1 + 휏 ∇ 퐶 = 0,                        (4)                                           

푡 = 휆푢 , 훿 + 휇 푢 , + 푢 , +퐾 푢 , − 휖 휙 − 훽 1 + 휏 훿 푇 − 훽 1 + 휏 훿 퐶,     (5) 
푚 = 훼휙 , 훿 + 훽휙 , + 훾휙 , ,                      (6)  
The plate surface is illuminated by laser pulse given by the heat input 

푄 = 퐼 푓(푡)푔(푥 )ℎ(푥 )																																		(7) 
where 퐼  is the energy absorbed. The temporal profile 푓(푡) is represented as, 

푓(푡) = 푒                                              (8) 

Here 푡  is the pulse rise time. The pulse is also assumed to have a Gaussian spatial profile in 푥  

푔(푥) = 푒       (9) 
Where 푟 is the beam radius, and as a function of the depth 푥  the heat deposition dueto the laser pulse is assumed to decay 
exponentially within the solid, 
 
ℎ(푥 ) = 훾∗푒 ∗                                                  (10) 
 
Equation (7) with the aid of (8,9 and 10) takes the form 

푄 =
∗
푡푒 푒 푒 ∗    ,                     (11)   

we take  
풖 = (푢 , 0,푢 ),흓 = (0,휙 , 0),    (12) 
For further consideration, it is convenient to introduce in equations (1.1)-(1.4) the dimensionless quantities defined as: 
푢 =

∗
푢  ,   푥 =

∗
푥  ,    푡 = 휔∗푡 ,    푇 =  ,    휏 = 휔∗휏  ,    휏 = 휔∗휏  ,훾 = 휔∗훾 , 푡 = 푡  ,휔∗ =

∗

∗ ,휙 =

휙  ,    휏 = 휔∗휏  ,    푐 =  ,    푐 =  ,    푐 =  ,     푐 =  ,    휀 = ∗  ,푚∗ =
∗
푚 		,							퐶 = 퐶	,

푄 =
∗ ∗

∗ 푄        (13) 
 
Making use of (13) in (1)-(4) and with the aid of (12), we obtain: 
 
푎 + 푎 ∇ 푢 − 푎 − 1 + 휏 − 푎 1 + 휏 퐶 = 휌 	,                       (14) 

푎 + 푎 ∇ 푢 + 푎 − 1 + 휏 − 푎 1 + 휏 퐶 = 휌 	,                                                 (15) 

∇ 휙 − 2푎 휙 + 푎 − = 푎 휙̈ 																	(16) 

−∇ 푇 + + 휏 푇 + 푎 + 휀휏 푒 + 푎 + 훾 퐶 = 푄 푓∗(푥 , 푡)푒 ∗                        (17) 

∇ 푒 + 푎 1 + 휏 ∇ 푇+푎 1 + 휖휏 퐶̇ − 푎 1 + 휏 ∇ 퐶 = 0	,                          (18)                                                             
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The displacement components 푢  and 푢  are related to the non- dimensional potential functions 휙 and 휓 as: 
푢 = −   ,    푢 = +                      (19)                   
Substituting the values of 푢 and푢  from (19) in (14)-(18) and with the aid of (12), we obtain:  
∇ 휙 − 휙̈ − 1 + 휏 푇 − 푎 1 + 휏 퐶 = 0,      (20) 

∇ 휙 + 푎 1 + 휏 ∇ 푇+푎 1 + 휖휏 퐶̇ − 푎 1 + 휏 ∇ 퐶 = 0,                              (21)                 

1 + 휏 푇̇ + 푎 + 휀휏 ∇ 휙 + 푎 + 훾 퐶 − ∇ 푇 = 푄 푓∗(푥 , 푡)푒 ∗ ,               (22)     
푎 ∇ 휓− 휓̈ + 푎 휙 = 0,                           (23)  
∇ 휙 − 2푎 휙 − 푎 ∇ ψ = 푎 휙̈ ,          (24) 
 
Solution of the Problem 
We define Laplace transform and Fourier transform respectively as:  
푓̅(푠,푥 ,푥 ) = ∫ 푓(푡, 푥 ,푥 )푒 푑푡	,           (25)        
푓(푥 , 휉, 푠) = ∫ 푓̅(푠,푥 ,푥 )푒 푑푥 	,      (26)   
Applying Laplace transform defined by (25) on (20)-(24) and then applying Fourier transforms defined by (26) on the 
resulting quantities and eliminating퐶&푇 , 휙&푇 ,휙&퐶 and 휙  respectively from the resulting equations, we obtain: 
[퐷 + 퐴퐷 + 퐵퐷 + 퐶]휙 = 푓 푒 ∗                    (27) 
[퐷 + 퐴퐷 + 퐵퐷 + 퐶]푇 = 푓 푒 ∗                    (28) 
[퐷 + 퐴퐷 + 퐵퐷 + 퐶]퐶 = 푓 푒 ∗                    (29) 
[퐷 + 퐸퐷 + 퐹]휓 = 0 ,                 (30) 
The solutions of the equations (27)-(30) satisfying the radiation conditions that 휙,휙∗,푇,휙 ,휓 → 0 as 푥 → ∞ are given 
by: 

휙 = 퐵 푒 + 퐵 푒 + 퐵 푒 + 퐿 푒 ∗  (31) 

푇 = 푑 퐵 푒 + 푑 퐵 푒 + 푑 퐵 푒 + 푒 ∗        (32)                           

퐶 = 푒 퐵 푒 + 푒 퐵 푒 + 푒 퐵 푒 + 퐿 푒 ∗                                            (33)                                 

휓 = 퐵 푒 + 퐵 푒       (34) 

휙 = ℎ 퐵 푒 + ℎ 퐵 푒 																																(35)                     

where 푑 = , 푒 = 	 , 푖 = 1,2,3&ℎ = 	 , 푖 = 5,6 

퐿 = , 푖 = 1,2,3 

and 푚 (푖 = 1,2,3) are the roots of the characteristic equation of equation (27) and 푚 (푖 = 4,5) are the roots of the 
characteristic equation of equation (30). 
 
Boundary Condition 
We consider concentrated normal force and concentrated thermal source at the boundary surface푥 = 0, mathematically, 
these can be written as: 
푡 = −퐹 휓 (푥 )훿(푡),푡 = 0,푚 = 0, 
푇 = 퐹 휓 (푥 )훿(푡) ,  퐶 = 퐹 휓 (푥 )훿(푡)      (36)  
  
Where 퐹  is the magnitude of the applied force and 퐹  is the constant temperature applied on the boundary.      
Also  

푡 = 휆푒 + (2휇 + 퐾)푢 , − 훽 1 + 휏
휕
휕푡 푇 − 훽 1 + 휏

휕
휕푡 퐶 
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푡 = (2휇 + 퐾)푢 , −퐾휙 푚 = 훽휙 ,         (37) 
Substituting the values of 휙,휙∗,푇,휓,휙  from the equations (31)-(35) in the boundary condition (36) and using (5)-(11), (12)-
(13), (25)-(26) and solving the resulting equations, we obtain: 
푡 = ∑ 퐺 푒 −푀 푒 ∗ , 푖 = 1,2, … ,5                        (38) 
푡 = ∑ 퐺 푒 −푀 푒 ∗ ,	푖 = 1,2, … ,5                        (39)  
푚 = ∑ 퐺 푒 −푀 푒 ∗ ,	푖 = 1,2, … ,5     (40) 
푇 = ∑ 퐺 푒 −푀 푒 ∗ , 푖 = 1,2, … ,5        (41) 
∑ 퐺 푒 −푀 푒 ∗ , 푖 = 1,2, … ,5               (42) 
Case 1:      for the thermal source:퐹 = 0 
Case 2:      for the normal source:퐹 = 0 
 
Applications 
Uniformly distributed source: The solution due to uniformly distributed force applied on the half-space is obtained by 
setting 

휓 (푥 ) = 1, |푥 | ≤ 푑
0, |푥 | > 푑(43) 

Applying Laplace and Fourier transforms on (4.7), gives  휓 (휉) = 	 ( ) , 휉 ≠ 0																																			(44) 
 

Linearly distributed source 
The solution due to linearly distributed force over a strip of non-dimensional width 2d, applied on the half-space is obtained 
by setting 

휓 (푥 ) = 1− | | , |푥 | ≤ 푑
0, |푥 | > 푑

											(45) 

Applying Laplace and Fourier transforms on (4.7), gives 
휓 (휉) = 	 ( ) , 휉 ≠ 0												(46) 

 
Particular cases 
(i) If we take	휏 = 휏 = 0,			휀 = 	1 , in Eqs. (38)- (42), we obtain the corresponding expressions of stresses, 

displacements and temperature distribution for microstretch thermoelastic half space with one relaxation time. 
(ii) If we take 휀 = 	0  in Eqs. (38)- (42), the corresponding expressions of stresses, displacements and temperature 

distribution are obtained for microstretch thermoelastic half space with two relaxation times. 
(iii)    Taking 	휏 = 휏 = 휏 = 	휏 = 0 in Eqs. (38)-   (42), yield the corresponding expressions of     stresses, displacements 

and temperature distribution for microstretch coupled thermoelastic half space. 
 
Special case 
 
Micropolar Thermoelastic Solid  
In absence of mass diffusion effect in Equations (38) - (42), we obtain the corresponding expressions of stresses, 
displacements and temperature for micropolar generalized thermoelastic half space. 
 
Inversion of the transforms 
The transformed displacements, stresses and temperature changes are functions of the parameters of Laplace and Fourier 
transforms 푠 and 휉	respectively and hence these are of the form	푓(푠, 휉, 푧) . To obtain the solution of the problem in the 
physical domain, we must invert the Laplace and Fourier transform by using the method applied by Kumar [34]. 
 
Numerical Results and Discussion 
The analysis is conducted for a magnesium crystal-like material. For numerical computations, following Eringen [3],the 
values of physical constants are: 
휆 = 9.4 × 10 Nm ,휇 = 4.0 × 10 Nm ,퐾 = 1.0 × 10 Nm ,휌 = 1.74 × 10 Kgm , 푗 = 0.2 × 10 m ,				훾 = 0.779 × 10 N 

Comparison of the dimensionless form of the field variables for the cases of micropolar mass diffusion thermoelastic medium 
(MPMD) and micropoar thermoelastic medium (MP) for two different values of time t (t=.01 and t=.02), subjected to 
linearly distributed source is shown in Figures 1-5. The values of all physical quantities for all cases are shown in the 
range	0 ≤ 푥 ≤ 2.Solid lines, dash lines corresponds to micropolar thermoelastic mass diffusion medium (MPMDT1) for t 
=0.01andmicropolar thermoelastic mass diffusion medium (MPMDT2)fort=0.02 respectively. Solid lines with central 
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symbol & dash line with central symbol corresponds to micropolar thermoelastic (MPT1 and MPT2) for t=.01and 
t=.02respectively. 
 
Linearly distributed normal force: 
Fig. 1 shows the variation of normal stress 푡  with the distance	푥 . It is noticed that for MPMDT1 and MPMDT2,	푡  show 
similar behavior. The value of normal stress monotonically increases as 푥  and then oscillates. The value of  푡  increases 
near the application of the normal force due to the mass diffusion effect and then remain oscillating for all values of 푥 . 
Fig. 2 displays the variation of tangential stress 푡  with the distance푥 . It is noticed that initially the behavior of 푡  for 
MPMDT1 and MPT1 show variable trend but for MPMDT1, MPMDT2 and MPT1, MPT2 exhibits similar behavior. 푡  
Initially decrease monotonically for all the cases. The variation in tangential stress in micropolar thermoelastic is more than 
that of micropolar thermoelastic with mass diffusion. 
Fig. 3 shows the variation of couple tangential stress 푚  with distance푥 . The behavior and variation of 푚 for MPMDT1, 
MPMDT2, MPT1 and MPT2 remain similar to each other for all values of 푥 . The magnitude of couple tangential stress in 
micropolar thermoelastic with mass diffusion is more than that of micropolar thermoelastic 
Fig. 4 depicts the variation of temperature푇 with distance	푥 . The trend and variation of 푇 is similar in case of MPMDT1, 
MPMDT2 and MPT1 initially. For these curves the initial behavior is monotonically decreasing and oscillator away from the 
point of application of normal force. MPT2 show opposite trend initially. Fig. 5 display the variation of mass concentration퐶 
with distance푥 . For MPMDT1 and MPMDT2 the graphs are similar. Initially the trend is decreasing. After some oscillatory 
behavior mass concentration approaches to the boundary surface away from the application of force. 
 

   
                           Fig. 1. Variation of normal stress with푥 ,                   Fig. 2. Variation of tangential stress with푥  

  
        
                         Fig. 3. Variation of couple tangential stress with 푥      Fig. 4. Variation of temperature distribution with    푥  
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Fig. 5. Variation of mass concentration with 푥  
 

Conclusions 
The problem consists of investigating displacement components, scalar mass concentration, temperature distribution and 
stress components in a homogeneous isotropic micropolar mass diffusion thermoelastic half space due to various sources 
subjected to laser pulse. Integral transform technique is employed to express the results mathematically. Theoretically 
obtained field variables are also exemplified through a specific model to present the results in the transformed domain. The 
analysis of results permits some concluding remarks: 
(1) It is clear from the figures that all the field variables have nonzero values only in the bounded region of space indicating 
that all the results are in agreement with the generalized theory of thermoelasticity. 
(2) The effect of the mass concentration is much pronounced in all the resulting quantities. 
(3) It is noticed that the figures that the time 푡 plays a significant role in all the field quantities. Changes inthe value of time 푡 
cause significant changes in all the simulated resulting quantities. 
(4) It can be easily concluded from the figures that the curves for various stresses in case of micropolar mass diffusion solid 
show similar trends. 
(5) The variation of mass concentration differs significantly due to the presence of normal force and due to the presence of 
thermal source. 
(6) Tangential stress, couple stress and temperature change are also affected due to diffusion effect as well as load/source 
applied. 
The new model is employed in a micropolar mass diffusion thermoelastic medium as a new improvement in the field of 
thermoelasticity. The subject becomes more interesting due to irradiation of a laser pulse with an extensive short duration or a 
very high heat flux has found numerous applications. The method used in this article is applicable to a wide range of 
problems in thermodynamics. By the obtained results, it is expected that the present model of equations will serve as more 
realistic and will provide motivation to investigate microstretch generalized thermoelasticity problems regarding laser pulse 
heat with high heat flux and/or short time duration. 
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